
The design and development of modular and adaptive algorithms

J. W. Banks, W. D. Henshaw, LLNL

How do we construct physics based simulation tools1 that can be made to efficiently use a future
computer whose makeup is not known exactly, but whose general construction can be inferred from
prevailing hardware trends? These trends inform our best estimates of the likely composition of
such a next generation machine, and the outlook is that this computer will be massively multi-core
(including embedded accelerators such as GPUs), will penalize excessive communication, and may
experience performance irregularities and frequent faults. Our position is therefore:

Proposition: To operate effectively in this challenging environment, mathematical research is
required to construct new modular algorithms that can be decomposed into a large number of loosely
coupled components, themselves consisting of multiple subcomponents or tasks, whose execution can
be automatically and adaptively orchestrated in order to further the overall simulation.

Significant new math research on developing decoupled modular strategies should be a priority
and will likely lead to much better utilization of future machines. To accomplish this goal the
following items should be addressed;

• increased mathematical modularity of the simulation tool,

• flexible, dynamic methods that adapt to the environment, and

• a high-level algorithmic description that enables automatic generation of low-level implemen-
tations and dynamic algorithm selection.

Increasing the modularity simulation tools through mathematical decomposition is
an important applied math problem that should be addressed. Consider the example of a
fluid-structure problem consisting of compressible fluid flow with an elastic body. Broadly speaking
there are two primary simulation approaches for such an FSI problem: partitioned and monolithic.
In a partitioned approach, the solvers for each piece are isolated from each other and coupled only
through the interface. This is in contrast to a fully-coupled, monolithic approach where the entire
system is advanced by a single unified solver, typically by an implicit method. In a partitioned
solver, each physical process is considered in isolation, so each solver constitutes a confined module.
Partitioned techniques naturally increase algorithmic concurrency, reduce global synchronizations,
and fit well within a modular fault tolerance strategy where global resilience is achieved by hard-
ening isolated subcomponents and then combining these in a hierarchical manner. There are many
examples of modular partitioning including approximate factored schemes, alternating-direction-
implicit (ADI) methods, deferred correction, etc. Whatever the case, by introducing modularity,
complex simulations are reduced to smaller subcomponents whose interconnectedness is more eas-
ily manipulated to take full advantage of a new generation of computer (for example overlapping
communication with computation, restarting failed computations due to hardware interruptions, or
incorporating local time stepping).

1our focus is primarily partial differential equations (PDEs)

1



Partitioned schemes have some significant challenges including maintaining numerical stability,
achieving good convergence rates, and maintaining accuracy at interfaces, all of which can be
addressed by applied math research. For example, we have recently demonstrated that by using
detailed mathematical and numerical analysis, stable and accurate partitioned solvers can be created
for compressible FSI problems [1, 2, 3, 4]. Our work is now pushing these results into incompressible
FSI regimes and more. Other applications are likely to see similar benefit from a renewed push
toward increased modularization.

We can create flexible, dynamic methods that adapt to the environment by taking
advantage of increased mathematical modularity. It seems likely that future machines will
be highly heterogenous in the sense that different cores and/or pieces of the communication network
may operate sligh+tly differently than their counterparts on different parts of the machine. As a
result, different algorithms and/or different implementations of the same algorithm are likely to
perform differently on various pieces of the machine. In order to obtain optimal performance it will
be important to dynamically select the best fit for each part of the machine. Flexibility is key here,
and mathematical analysis should be performed to decide which combinations can be permitted and
which cannot. For example, it may be that some part of the machine is unresponsive for some time,
and the remainder of the computation needs data from the unresponsive piece to continue. Rather
than hold up the whole calculation, we might use a low cost model (such as extrapolation) for some
time and then sync back up at some later time. The stability implications of such an approach are
clearly significant, and detailed numerical analysis is needed to understand the limits of the overall
approach.

Developing a high-level algorithmic description that enables automatic generation
of low-level implementations and dynamic algorithm selection will provide computer
scientists and mathematicians a common framework that can be used to develop scal-
able and portable simulation tools. Higher level descriptions of a problem retain important
information about the nature of the computation that can be used when mapping the simulation
onto a machine. In fact the same problem may need to be instantiated differently on different sub-
sets of the computer in order to obtain optimal performance. For example it is extremely unlikely
that the intent of an application is to solve the matrix equation Ax = b. To be sure, this will be
a critical step in many simulation tools, but the set of solution strategies that may be appropriate
depends significantly on the nature of the continuous problem. For example, elliptic problems are
likely to be able to take advantage of multigrid, while hyperbolic problems may have trouble when
treated with the same techniques. As a second example, it may be more efficient to interleave mul-
tiple ensemble calculations for a UQ analysis than to run them independently; for example, a lack
of perfect scalability in one ensemble calculation may lead to idle processors that could be usefully
employed for a second ensemble calculation. These choices will need to be made automatically and
dynamically. We will therefore need to devise a high-level language to express the basic mathematics
of the problem being solved as well as an outline of the discretization being used. This information
can then be made available to the runtime environment and the whole system can be dynamically
optimized in a holistic manner.

2



References

[1] J. W. Banks, B. Sjögreen, A normal mode stability analysis of numerical interface conditions
for fluid/structure interaction, Commun. Comput. Phys. 10 (2) (2011) 279–304.

[2] J. W. Banks, W. D. Henshaw, D. W. Schwendeman, Deforming composite grids for solving fluid
structure problems, J. Comput. Phys. 231 (2012) 3518–3547.

[3] B. Sjögreen, J. W. Banks, Stability of finite diference discretizations of multi-physics interface
conditions, Commun. Comput. Phys. 13 (2) (2013) 386–410.

[4] J. W. Banks, W. D. Henshaw, B. Sjögreen, A stable FSI algorithm for light rigid bodies in
compressible flow, J. Comput. Phys.

3


